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Abstract-An analysis of the strongly non-linear differential equations governing the elastica con­
figuration of a flexible straight bar due to a longitudinal compressive force continuously distributed
along its length. is presented in this paper. For the derivation of a straightforward closed-form
solution of this complicated problem several functional transformations are used and a quantitative
analysis is developed yielding reliable results in conformity with the physical problem. The functional
transformations introduced in this paper though simple are original and useful in solving. without
the use of numerical procedures. problems of non-linear elasticity.

I. INTRODUCTION

In the linear buckling theory (second-order theory). if longitudinal compressive forces are
continuously distributed along a straight bar. the ditferential equation of the detlection
curve of the buckled bar is no longer expressed by an equation with constant coefficients
given by Timoshenko and Gere (1961). The solution of this equation requires the application
of infinite series. or the recourse to one of the approximate methods. such us the energy
method.

The problem of linear buckling of a straight prismatic bar due to its own weight was
discussed lirst by Euler. who however. did not succeed in obtaining a satisfactory solution.
This problem was solved by Greenhill (I KK4). A variety of linear buckling problems was
indic.tled in this paper. which can be solved by using Bessel functions. Independently. the
same problem was discussed in a complete manner by Jasinsky (1902). Dondorlf (1907)
and Karm.in and Biot (1940).

On the other hand. the problem of non-linear buckling analysis (elastica problem) of
a straight bar was first solved in a complete form by Love (1944). He determined. as a first
application of the theorem of Kirchhoff's kinetic analogues. the forms in which a straight
thin rod can be held by forces and couples applied at its ends only. Also. analytic solutions
of the strongly non-linear differential e4uations. governing the buckling. or post-buckling
behaviour for straight and prismatic bars. due only to concentrated loads and couples, have
been given by Frisch-Fray (1962) and Griner (1984). Especially. Griner (1984) has developed
a parametric solution of the elastica problem concerning a thin. simply supported rod.
subjected to terminal compressive forces and couples.

Large flexural del1ections of bars were also solved (in terms of elliptic functions) when
the loads consist ofa combination ofend forces and couples. as well as uniformly distributed
transverse loads. These solutions were included in the treatise of Halphen (1888) and used
in the paper by Panayotounakos and Theocaris (1986). Finally. the problem ofeither linear
or non-linear buckling analysis in planar curved bars under uniform pressure or terminal
concentrated forces is discussed in Panayotounakos and Theocaris (1981) and DaDeppo
and Schmidt (1974).

The object of this paper is to present a closed-form solution for the problem of non­
linear and buckling analysis for a straight prismatic bar due to a longitudinal compressive
force. continuously distributed .tlong its length. This problem was posed long ago. but its
importance in applications to slX'Cial engineering structures such as pipes. drills. etc. has
only recently been realized. In this context it is worthwhile underlining that analytic solutions

t All correspondence related to this paper should be addressed to Prof. P. S. Theocaris. Department of
Engineering Sciences. Athens National Technical University. P.O. Box 77230. Athens Grt 75·10. Greece.
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based on the non-linear theory of elasticity are impossible. because closed-form solutions
of the governing non-linear differential equations have not been as yet developed.

The analysis was based on the integration of the exact. strongly non-linear. equilibrium
differential equation for the values of the slope 0 of the deflected elastica lying in the limited
interval [0°, 20T The set of values of the slope was restricted in the interval [OQ. 20']
because this interval is of practical interest for engineering structures and furthermore the
approximate substitution of the appearing function cot 0, by I/O, is accurate enough for
this interval and for any practical application. Then the solutions are derived through the
reduction of the aforementioned differential equation to a final integrable form based also
on further successive functional transformations.

It has been shown that the relations giving the critical load are divided into two terms;
the first is in accordance with the corresponding buckling load in linear theory, while the
second term depends on the free end slope of the deflected elastica.

Extending the proposed methodology for the interval [0',20"] and using new functional
transformations, we succeeded also in reducing the same strongly non-linear equilibrium
differential equation in simple integrable forms for the values of the slope 0 lying in the
subintervals (20'" 45") and [45". 90). For this purpose substitutions of the function cot 0
were now introduced which were also accurate enough in these intervals. Consequently. it
becomes obvious that the elastica configuration of the bar in all the subintervals of the
slope cannot be described by a unique solution.

2. FORMULATION OF THE NON·lINEAR DIFFERENTIAL EQUATIONS

Consider the problem of large deflections of a straight prismatic bar fixed ~lt its base
and free at its upper end. The bar buckles under the action of a longitudinal compressive
force q, which is uniformly distributed along the length {(Fig. I). Such a type of loading is
the bar's own weight. If the bar buckles. as shown by the dotted line in Fig. I, the exact
differential equation of the deflection curve is expressed by

in which

0' = A f' (11-Y) d~

A =q/EJ

(I)

(2)

A

where () is the slope of the deflected elastica; £J the flexural rigidity of the structure and

•
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Fig. I. Geometry and sign convention of a ftcxible straight bar under a uniformly distributed a~ial

load.
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primes denote differentiation with respect to the arc s. The integral on the right-hand side
of eqn (I) represents the bending moment at any cross-section. mn. produced by the
uniformly distributed load of intensity q (Timoshenko and Gere. 1961). Finally, the change
in length of the column due to compression is neglected. This assumption is justified for
the usual structural materials.

Differentiating eqn (I) once with respect to s and taking into account the well-known
relations

we obtain

dx=dscosO; dy=dssin(}

d[ [-t. Jdl'0" = A dy J. (,,-y) de cis = -A(x,-.\") sin O.

(3)

(4)

Dividing both members of eqn (4) by sin 0 :1= 0 and differentiating again the new resulting
expression once with respect to s. we derive the following strongly non-linear differential
equation of the third order (with constant coefficients) :

0'" sin 0-0'0" cos 0 = A sin~ Ocos O. (5)

This equ'ltion was first presented by Heinzerling (1938) and. since then. W.lS solved in a
closed form only for special cases when thc bar is submitted to tcrminal concentrated forces
and couples (Timoshenko and Gere. 1961; Love. 1944; Frisch-Fray. 1962: Griner. 1984).
It is obvious th'lt. if we consider the S<lme problem, but based on the linear buckling theory
(sl.'Cond-ordcr theory). we have

dx =ds; dy = tJ ds; dy/dx = {}

and consequently eqn (4) becomcs

d.ly dy
----j = - A(I-x)-­
dx dx

which is in coincidence with formula (b). p. 101. ofTimoshenko and Gere (1961).
We shall prove now that eqn (5), by applying a suitable functional transformation.

can be reduced to a new equivalent non-linear differential equation of second order. This
transformation is given below.

2.1. Transformation (0
We put

(6)

which yields

(7)

(8)

where asterisks indicate differentiation with respect to e. In this case eqn (5) is transformed
to its equivalent
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1,'_' •• _ 2~ , I"

" "

A (r/( I - .= -) i - = cot (})- (1_~2)li2 ~ .. (9)

which, further, in dimensionless form can be written as

(10)

The aim of this paper is, first, to present a closed-form solution of the differential
equation, eqn (9) (or eqn (10», for the values of the variable () lying inside the interval [0°,
200

], which is of practical interest in engineering structures. This solution approximately
satisfies the aforementioned buckling problem with a maximum error of less than 2.5%.

In order to transform eqn (9) (or eqn (10» into an integrable form we shall use
successive functional transformations based on a simplified expression for the quantity
~/(1- ~2) li2 or cot () inside the interval [0", 20T We would also underline here that, as will
be seen in Section 5, similar approximations of either function ~/( I - ~2) 1/2 or function
1/(,,/2) 1/2 will take place in the other two subintervals for values of 0 between (20°,45°) and
[45°,90"]. so that the general solution of the buckling problem is not unique for the whole
interval [0", 90']. but it is divided into three subintervals.

3, ANALYSIS

We shall try to find solutions of eqn (9) (or eqn (10» inside the interval [0°, 20"] of
the slope (}(s). For this case one may use the approximate relationship

~ =cos () ~ I - (}2/2 ==- 0 = J2( I _~) I 2

which is sulliciently accurate for the interval (Je [0", 20"].
Then

Introducing relation (12) into eqn (10) we obtain the differential equation

( II)

(12)

(13)

Then we have already succeeded in transforming the differential equation, eqn (10), to an
equivalent form the right-hand member of which includes the monomial (1_~)-'I2. As we
shall sec, the equation of this type can be reduced to an equivalent first-order non-linear
differential equation. For this purpose the following functional transformations are
required.

3.1. Transformation (i)
We introduce, instead of ,,(~), another function p(w) of a new independent variable w

by taking

In this case one may get

,,(~)/2 = tp(w); w = In t; t = I -~. (14)
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[,,(eWl* =d(,,12)/de = {[tp(oo)l/doo}(doo{dt)(dt{de) = -(tp+tp){t = -(p+p) (IS)

(16)

where dots denote differentiation with respect to 00.

Inserting eqns (14)-(16) into eqn (13) we find

(17)

The following transformation.

3.2. Transformation (ii)

and the expression

d d dpP= -(h-p) = - (h-p) - = [(dh{dp) -I](h-p)
doo dp dw

= [(dh{dr)(dr{dp) -I](h-p) = (II'J2A/~p-I/2 -I )(h-p)

introduced into eqn (17) yields the following first-order Abel equation:

(h-p)h' = I. (19)

Here primes represent differentiation with respect to the variable r. By inverting the
dilTcrentials in the last equation one may obtain

(20)

which is a Riccati differential equation with respect to r.
From now on. using the well-known transformation given on p. 22 of Kamke (1971)

. .. . .,
u uu -u·

r(h) = k-'---; ; = -k',··u ··u·
(21)

where stars indicate differentiations with respect to h. the Riccati equation (20) leads to the
following second-order linear differential equation of the Bessel type (case 10 on p. 440 of
Kamke (1971»:

(22)

the general integral of which is given by

(23)

In this relation i = J (- I); J Ii). N 1/3 are Bessel functions of the first and second kind.
respectively. of order 1/3; and. CI ; C2 represent random constants of integration.

We notice here that the reduction of the non-linear differential equation. eqn (10). to
a Bessel equation. eqn (22). verifies the contentions of Greenhill (1884). Jasinsky (1902).
Dondorff (1907) and Karman and Biot (1940). according to which a variety of buckling
problems can be solved by using Bessel functions.
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4. SOLUTION TECHNIQUE

It is obvious from the above-mentioned procedure of the solution of eqn (19) (or eqn
(20». that the inverse course. Le. the determination of the function O(s) through c1osed­
form solution (23) is a complicated problem. because multiple inversions of the Bessel
functions are required. In spite of these. as we shall prove. general solution (23) can be
conveniently approached in the considered interval [0. 20 Jso as to obtain a closed-form
expression of the O(s)-function.

In fact. the general solution (23). after a little algebra. can be written in the form

(24)

where c; care new constants of integration.
We introduce now the boundary conditions

for x = x, =- 0, = IX; O~ =o.

Observing from relation (4) that 0; = 0 when x = x,. and using functional transformations
(1)-(12) we may derive that

On the other hand. because of the v.lIidity of eq uations

we obtain

p, =0; h, = o.

Combining the previous results together with solution (24) we obtain ,. = O. and therefore.
the general solution of the problem takes the form

(25)

In the sequel we shall prove that for every 0 lying inside the interval [0°, 20"], the terms
k 2h 3/12; eh6/504; ... are very small in comparison with unity, so that they can be neglected.
In fact. supposing that the general solution lI(h) is expressed by

u(h) = ch

then. using functional transformation (21). we have

I I
r(h) = k---'-' 4!> h = k-' ..• I -·r

From now on we can readily prove the inequality

or. based on the last equation. the inequality

(26)

(27)
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1/12k4r J « 1.

From relations (18); (14); (II) and (6) one may obtain

1185

(28)

in which I\: "" I\:(s) denotes the curvature function of the bar. Consequently. inequality (28),
after some algebra. leads to

For example. for a prismatic bar of length I"" 300 em made of steel. with a quad­
rangularcross-section F"", 5 x 5 cm2

• its own weight is equal to 0.196 kpcm- l and therefore
the last inequality becomes

But. in the c1misical problem of elastica in cantilevers. the quantity 1\:1 can be replaced by
the equivulent cll:pression (p. 78 of Timoshenko and Gere (1961»

1\:1"" J2K[sin (iX/2)J(cos tJ-cos a)I!2

in which K[sin (ex/2)) is the complete elliptic integral of the first kind of modulus sin (a.{2).
Considering the mall:imum <ll1gle a of the free end of the euntilever (in our case a. = 20")
and an arbitrary value of the unglc (J inside the interv.lI [0". 20"). the validity of the last
inequality is obvious. Using now eqns (21) amI (18) we lead to the integral

kJp{(l-kpJp) = dm

which gives

t-kpJp "" c e- Jwj2

where £' is u new constant of integration.
Combining relations (30) and (14) together with cqn (II) we obtain

Using the half <Ingle identity cos (} = cos2 (0{2) -sin2 (0{2) and reammging, we obtain

Observing that 0; = 0 when O2 "'" iX, we conclude from the last equation that

c =sin' (a{2)

and hence

dO = "A 113 ds
[sin> (0{2) -sin! (a{2») If) - •

Taking the integrals in both members of eqn (32) we have

(29)

(30)

(31)

(32)
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_2A 13 [I ds = -A 13 fl ds = f2 d9/[sin3 (OI2)-sin3(%/2W,3. (33)Jo -1-2

This elliptic integral can be simplified by using the notation p =sin (%/2) and by introducing
a new variable cp in such a manner that

sin (BI2)/sin (a/2) =sin (BI2)/p =sin qJ. (34)

It is seen from this relation that when Bvaries between - % and %. sin qJ varies between - I
and I; hence cp varies from - Tel2 to Te/2. We also find from eqn (34). by differentiation.
that

Substituting in eqn (33) and approximating the square root we obtain

The second integral of this relation gives

while the first integral takes the form

f
~'2
-./2 cos cp dcpl(sin3

qJ_I)ln

We now make use of the substitution (p. 160 of Byrd and Friedman (1971»

sin qJ = (J3't'-3)/(J3't'+3); cos cp dIp =6J3 d!/(J3't'+3)2; !e[O.co]

and integral (37) is transformed to the equiv~llcnt

(38)

The trapezoidal quadrature rule is ideal for the numerical computation of this class of
elliptic integrals. Making these calculations one may conclude that the above integral
converges to the value IJI = 2.000. Therefore. relation (33) leads to

2.000+0.397p2 = A I 3/ (39)

from which one may conclude that the value of the uniform load for the bar"shown in Fig.
I (depending on the value of the angle IX at the top) is given by
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ql = (2.ooo+0.397pl)JEJ/l l .

1187

(40)

We notice here that. when the deflection of the bar is very small. it is valid ex = 0° and from
eqn (40) we obtain

(q/)cr = 8.ooo£J/12

which is the value of the critical load (with an error of about 2%) according to the linear
buckling theory (second-order theory).

As the value of <X increases from 0° to 20° the quantity ql also increases. For example,
take the case where IX = 20" and p = sin (rx/2) = 0.174. Using relation (39) we evaluate for
this case

ql= 8.145EJW.

Taking the ratio of ql to the critical load, we find

ql/(q/)cr = 8.145/8.000 = 1.018.

Thus. a load which is 1.8% greater than the Euler load. at which buckling first begins,
will produce a deflection such that the tangent at the top subtends an angle of 20° with the
vcrtical. This rcsult is analogous to the result given in Table 2-4. p. 79 of Timoshenko and
Gere (1961). for the case of the classical problem of elastica in cantilevers. due exclusively
to tcrminul cont.-cntr<tted loading.

S. GENERALIZATIONS AND DISCUSSION

In the previous sections we have succeeded in giving c1oSt.-d-form solutions of the
strongly non-linear differential equations deseribing the buckling problem in cantilevers.
due to axi.tl uniformly distributed loads. These solutions were derived by using elliptic
integrals and were valid for the values of the slope 0 of the dellected elastica lying inside
the interval [0".20"]. We also proved that the formula giving the critical load (relation (40»
is divided into two terms; the first term is in accordance with the corresponding buckling
load for the linear theory (second-order theory), while the second term depends on the free­
end-slope of the deflected elastica.

Hcre. as an extcnsion of thc proposed methodology, we shall try to reduce the differ­
ential equation. eqn (9) (or eqn (10», to simple integrable forms in other subintervals inside
the remaining interval [20",90°]. Since the previous reduction was based on the approximate
expression of the function e/(I-e2) 112 (or cot 8) in the subinterval [0°, 20°], we try now to
define similar approximations in the subsequent subintervals. The following cases are
distinguished.

5.1. Case (i): Oe (20',45")
Using the gr<lph of e/(1-<2) 1/2; <e [0, 1]. one may conclude that this function can be

approximately expressed by a polynomial of the second degree of the form

On the other hand, based on the methodology developed in Section 4. one may prove that
the function 1/(q/2) U = 1/,..:/ (K is the curvature function) can be written as

Consequently. the differential equation. eqn (9), takes the simpler form
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(41)

This form of the differential equation is included on p. 417, 2.55 of Kamke (1971) and the
functional transformation for its further reduction is expressed by

(41)

In fact, using relation (42), eqn (41) is transformed into

(43)

which, by the substitution

becomes

l''' +Xl' + i(P2 - 4AIX)y/8(A~) Ji2 =0

(44)

(45)

(primes denote differentiation with respect to x).
Equation (45) is a differential equation of the Whittaker type and its closed-form

solution is included on p. 473. 2.273. type (10) of Kamke (1971). We notice that in this case
the solution of eqn (9) is achieved by the Whittaker functions. namely according to a
procedure <lOalogous to the methodology followed for the values of the slope (} lying inside
the interval [0 " 20T

5.2. Case (ii) : () e [45", 70') ami Case (iii) : (J e [70". 90"]
In these two cases the dilferential equation. eqn (9), can be simplified as

(46)

in which

IX = 1.55; P= -0.18 for Oe (45", 70")

IX = 1.00; 1/ =0.00 for Oe [70", 90'1

Making use of the substitution

,,(~) =p(w); r:x~+P =w

the last differential equation is transformed to

(47)

(48)

where dots represent differentiation with respect to w.
This differential equation is of the same type as eqn (13). Then. if we apply trans­

formations 3.1 and 3.2, the resulting Abel equation cannot be integrated, as in the case of
&.'Ction 3. This is the reason why we have introduced the following new analytical treatment.

Multiplying both members ofeqn (48) by (P!(1f) 112_4Aw/1X2) (see p. 586, type 6.190­
Euler's method of Kamke (1971), we have

which can be further written as
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(plf -12A[w(p)l/lprt«1+8A[(pl)l/lrtal+8al[(Awlal)lrtA = O. (49)

Integrating we obtain

(50)

where CI is an integration constant.
By now. using functional transformations (47) and (6), eqn (50) leads to the following

first-order strongly non-linear differential equation with respect to " :

- (ti/sin 0)3 + 12A(iX cos 9+ PH,,) 1/~('ilsin 9) + 8AiX("l) I/~ + 8A 1(iX cos 0+ P)3liX-CI = O.

(51)

Here dots denote differentiations with respect to O.
We introduce the boundary conditions

for x = x. => 9. = IX; 9~ = (,,)~Il = 0; 0; = (~)./2 = O.

If 0 lies inside the interval [45", 70"), then max IX = 70°, while if 9 lies inside the interval
[70'. 90"). then mal( iX =90'. Combining these boundary conditions with eqn (51) we
conclude that. for the two values of 0, the constant of integration CI becomes respectively

ConSt.'qucntly. for the two cuscs. the last three terms ofeqn (51) take the forms

By using the resuhs of the classical problem of elastica in cantilevers (pp. 77-78 of
Timoshenko and Gere (1961», it is easy to prove that the terms A[(IX cos O+p>J­
(iXCOSiX+fJ).1)/iX~ and A(cos.10-COS3iX) are negligible in comparison with (,,3)1/2 =0'\ so
that they can be rejected. So, eqn (51) is written as

(52)

Relation (52) is an algebraic equation of Cardan's form with respect to w(,,) 1/2). Putting

12A sin2 O(iX cos O+fJ) .
p = - (,,)1 /2 ; Q= -SAiX sm3 ()

one may observe that the discriminant

is positive. Therefore. the first positive root ofeqn (52) becomes

(53)

ti/(,,) 1/2 = -2(-P/3)1/2 cosec 2cp; tan cp = {tan (fJ/2)]II3; sin fJ = 2! -PI3)l/2/Q.

(5~)

Introducing the quantity P from the first of eqns (54) we conclude that the angles fJ
and cp are very small so that one may write

sin fJ:::: fJ; tan cp:::: cp; cosec cp:::::: (1/2cp) + (cp/3).

Therefore. eqn (52) is reduced to
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,,= B sin 6(,,) 112+ r sin 9(7. cos 9+fJ); B =2A li3; r == 4A 2I3/3. (55)

Then it is valid

and the last equation takes the form

which is an Abel equation with respect to (tI) liZ. If 0 lies inside the interval [70".90"]. then
IX == I; P== 0 and eqn (56) is transformed into

(57)

We shall prove now that eqn (57) can be reduced to a linear second-order ordinary
differential eqmltion with constant coefficients. In fact. putting

('lli/Z = u(O) - Bcos 0

we have

[(tIl liZ)" =d(u- Bcos lJ)/dO "" li+ Bsin (]

and hence
. .

u-B cos (} = f sin 0 cos {} ()'

where primes denote differentiation with respect to u. Using the new transformation

leads to the equation

. .
-fyy'+By==u

which, further, by putting

y(u) = I/g' == I/(dg/du) = dtt/dg "" U. (y' == ii/u)

gives

• •
Bli-fli+u == O.

(58)

(59)

(60)

(61)

(62)

Here dots represent differentiation with respect to g.
For the second case, i.e. if {} lies inside the interval (45". 70"), the corresponding

equation to eqn (59) becomes

u-B cos 0 = IXr sin 0 cos 0 0'+pr sin 0 0'.

Using the appropriate transformation (60) we lead to the differential equation

.. .
yy'+py'ja. = Byjfa.-ujra..

Putting

(63)

(64)
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z(u) = y(u) +PI(/.

we obtain

where primes denote differentiation with respect to u.
Using the final transformation

= = Ilg' = l/(dgldu) = duldg = Ii, (=' = iilli)

1191

(65)

eqn (65) is reduced to the following complete second-order ordinary differential equation
with respect to u(g)

(66)

(dots represent differentiation with respect to g). We notice here that both eqns (62) and
(66) can be integrated by closed-form relations.

From the above analysis it becomes clear that the elastica configuration of the bar in
the subintervals of 0 considered cannot be described by a unique solution. If more than one
of the previous solutions must be used, then, a number of compatibility conditions must
be also introduced. These conditions result from the equality of the deflections and slopes
at the common points of the neighbouring subintervals, and arc sufficient for the evaluation
of the integration constants.

6. CONCLUSIONS

This paper establishes a closed-form solution for the problem of the elastica analysis
for straight and prismatic bars due to un uxial distributed load along its length.

The theory developed was based:

(i) on the introduction of convenient functional transformations, which succeed in
reducing the arising complicated strongly non-linear differential equation of the slope to
simple integrable forms;

(ii) on the development of a quantitative analysis in accordance with the physical
problem necessary for a more accurate solution of the aforementioned governing differential
equation.

Also, in the analysis, it was proved that:

(i) for slopes lying inside the interval [0°, 20'°], the formula giving the critical load is
divided into two terms; the first is in accordance with the corresponding buckling load in
linear theory, while the second term depends on the free-end slope of the deflected elastica;

(ii) for slopes lying inside the subintervals included in the interval (20°, 90") the non­
linear equilibrium differential equation can be reduced to other integrable forms.

Consequently. it is derived from the above analysis that the elastica configuration into the
interval [0\ 90") of the slope cannot be described by a unique solution.
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